
Geoff ’s Primer On iOS
Observers

Copyright © 2012 FarWest Software, Inc.

N

E

S

W

FarWest Software, Inc.

Table of Contents

Introduction 1

What Is An Observer? 2

Why Use Observers 4

The iOS Observer API 6

- addObserver:forKeyPath:options:context 6

- removeObserver:forKeyPath 6

- observeValueForKeyPath:ofObject:change:context 6

An Example App 7

Entering Text 8

But What About The Second View? 9

A Look At The Code 10

The First View’s Definition 10

Configuring The View 10

Notification From The return Key 11

Notification The Shared Property Changed 11

Performing Cleanup Activities 12

Second View Similar To First 12

Copyright © 2012 FarWest Software, Inc.

Geoff’s Primer on iOS Observers i

Pitfalls 13

Beware The Circular Reference Trap 13

Circular References With UITextField and Editing Changed Notification 14

Conclusion 16

Copyright © 2011 FarWest Software, Inc.

Geoff’s Primer on iOS Observers ii

Copyright © 2012 FarWest Software, Inc.

Geoff’s Primer on iOS Observers iii

Introduction

Observers in iOS provide a powerful way for objects in an iOS app to monitor the state or
value of data inside a model or other objects. It acts as a very simple publish-and-
subscribe system, but without much in the way of overhead. There is minimal work
involved to make an object observer-friendly, and only a modest amount of housekeeping
for objects that are observing properties on other objects.

This primer will show you the basics of how observers work in practice, and includes a
reference to an iOS project that you can build and run that shows observers in action.

This document is not a substitute for official Apple documentation, and does not attempt
to delve under the covers to explain how observers work “behind the scenes”. As always,
when in doubt refer to Apple’s documentation at http://developer.apple.com for the official
API’s and the latest information on this technology.

As a side-note, the observers in MacOS work in the exact same way, conforming to the
same message signatures and having the same functionality. If you know observers on
iOS, then you know observers on MacOS, and vice versa.

Copyright © 2011 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 1

http://developer.apple.com
http://developer.apple.com

What Is An Observer?

An Observer in iOS follows the basic Observer pattern as documented in Design
Patterns 1. The basic pattern is meant to allow one or more objects (observers) to monitor
or observe changes in state on another object (the subject). The diagram below illustrates
the relationship in its simplest form.

Object 1

someVariableObject 2

Notify when
value Changed

The formal description of the pattern shows that the subject maintains a list of observers,
and notifies them when appropriate. The UML for the Observer Pattern is shown below.

Copyright © 2012 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 2

1 Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson and Vlissides, Addison-
Wesley, 1994, ISBN 978-0201633610.

How the observer pattern actually works is dependent on the implementation. You can
build your own Observer pattern in Objective-C, and not use the built-in observer
functionality in iOS. However, the ready-made observer implementation in iOS is
lightweight and flexible, and using it is straightforward.

Copyright © 2011 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 3

Why Use Observers

So what are observers good for? Where observers come in handy is helping to conform to
the model-view-controller paradigm for iOS apps. It means that different views can all
monitor the same, common model, and update their own state, without the monitored
object having to know these views are watching, or requiring that the views that alter the
model notify all the other views that a change has occurred.

Take an example where two views can display and edit a text value in a shared model.

SharedObject

NSString * sharedTextString

Copyright © 2012 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 4

Without using the observer pattern (either the built-in version in iOS, or one of your own
construction), what would typically happen is that the views would have to be made aware
of each other. Each time a view changed a property, it would have to notify all the other
views that also use the property that the value has changed. In the example above, it is
pretty straightforward, since each view only needs to know about one other view. But if a
3rd view is added, then the original 2 views would have to be changed, and all 3 views
would have to know about each other. Adding a 4th view and so on makes it harder from a
maintenance point of view, and increases the possibility of introducing an error because a
view was overlooked.

The Observer pattern allows you to abstract the views from the data, and allows the views
to act independently of each other, while still being dependent on the data they are
interested in. This, in turn, makes it easier to add new views on the same data, because
the other views don’t have to change.

Another use for the Observer pattern is simple notification: by monitoring a variable, one
view or component can be notified (by a change in the variable’s value) that work should
be performed (or work in progress should stop). The actual value of the variable may not
matter, it’s the notification that is the trigger. This can be a simpler way of passing
notifications between components, rather than using the Notification Center technology.

Copyright © 2011 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 5

The iOS Observer API

The NSKeyValueObserving protocol provides for a very rich method for monitoring object
properties. The basics, though, only require that you use 2 methods on a subject object,
and implement one method in the observing class to be notified of changes. A sample
application is described later in this primer showing these methods in context.

- addObserver:forKeyPath:options:context
This method is used to add an observer to an object. The keyPath is the name of the
property that the observing objects wants to monitor. The options allow you to specify
whether you want the pre-change value or the new value after the change, as well as
when to be notified. The context allows you to provide your own data, which is passed
along when the observing object is notified of a change.

- removeObserver:forKeyPath
This removes the observer from the observed object’s list of listeners. This is a necessary
step to ensure that an object doesn’t get notified more than once of a change, and to
prevent views from being held when they are no longer in use. This second reason
prevents memory leaks, since the view instance won’t be garbage collected and the
memory associated with it freed up if it is still referenced as an observer.

- observeValueForKeyPath:ofObject:change:context
The observer must implement this to be notified of any changes made to properties. The
keyPath specified when you called addObserver, the object that changed and the context
you passed during addObserver are all included.

Copyright © 2012 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 6

An Example App

The example below shows a simple iOS app that has 2 views sharing a text property on a
singleton.

SharedObject

NSString * sharedTextString

A tab bar is used to manage moving between screens. The iOS storyboard feature was
used to build the sample application.

Copyright © 2011 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 7

The sample project is available at http://www.farwest.ca/ObserverSample.zip. The project
was created using XCode 4.2.1 and the app was built for iOS 5 on iPhone. Ignore the iPad
part of the project, as that wasn’t implemented or used.

Entering Text
In the sample app, you change the text by performing the following steps in either screen:

1.Tap on the text field. This brings up the keyboard.

2.Using the keyboard, type the new text value.

3.When you are finishing typing, tap the return key. This hides the keyboard, and
changes the value of the sharedTextString in the shared object instance.

When you run the app for the first time, the First View screen is visible. Changing the text
results in an entry in the text view of the form “Change to ...” with the new text as the last
part of the entry. For example, entering “abc” into the text field in the first view appears as
follows:

Copyright © 2012 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 8

http://www.farwest.ca/ObserverSample.zip
http://www.farwest.ca/ObserverSample.zip

But What About The Second View?
When we switch to the second view, the screen appears as follows.

So why doesn’t the change history field contain anything? After all, the text field has the
current value. Some might expect that the history field should contain something as well.

There is a simple explanation for this: the second view wasn’t loaded at startup. Until the
user taps on the tab for the second view, the second view doesn’t exist yet. Once loaded,
it remains loaded and active until the operating system decides it needs to reclaim space,
and one way to do that is to reclaim views that aren’t visible. Because the view wasn’t
loaded yet, it had’t registered any observers, and was therefore not notified of the changes
to the shared text property. The text field has the current string because it obtains that
data when it is created and set up in the viewDidLoad: method..

Copyright © 2011 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 9

A Look At The Code

The First View’s Definition
The first view’s definition in FirstViewController.h is as follows:

//
// FirstViewController.h
// ObserverSample
//
// Created by Geoff Kratz on 12-01-03.
// Copyright (c) 2012 FarWest Software, Inc. All rights reserved.
//

#import <UIKit/UIKit.h>

@interface FirstViewController : UIViewController<UITextFieldDelegate>

@property (weak, nonatomic) IBOutlet UITextField *sharedTextField;
@property (weak, nonatomic) IBOutlet UITextView *textHistoryView;

@end

The view contains two outlets (the text field where text is entered, and a text view to
display activity related to the shared value). The view controller is also a text field delegate,
to allow it to know that the return key was pressed and act accordingly.

Configuring The View
The method where the important pieces are configured is in the viewDidLoad: method.

- (void)viewDidLoad
{
 [super viewDidLoad];

 sharedTextField.text = [SharedObject getSharedObject].sharedTextString;
 [[SharedObject getSharedObject] addObserver:self forKeyPath:@"sharedTextString"
 options:NSKeyValueObservingOptionNew
 context:NULL];
}

The text field is set up to contain the current value of the shared text property. The instance
also adds itself as an observer on the singleton containing the shared property.

Copyright © 2012 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 10

Notification From The return Key
There are two methods on this object that are also important. The first is the delegate
method that is called when the “return” key is tapped.

-(BOOL)textFieldShouldReturn:(UITextField *)textField
{
 NSString *txt = sharedTextField.text;
 [SharedObject getSharedObject].sharedTextString = txt;
 [sharedTextField resignFirstResponder];
 return YES;
}

This method simply gets the value of the text from the text field, sets that value to the
shared property on the SharedObject, and then resigns the first responder, which hides the
keyboard.

Notification The Shared Property Changed
The next important method is the method called when the shared object’s value has
changed.

- (void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{
 NSLog(@"First view notified that shared text changed");
 NSString *sharedText = [SharedObject getSharedObject].sharedTextString;
 sharedTextField.text = sharedText;
 textHistoryView.text = [NSString stringWithFormat:@"%@\nChanged to %@",
 textHistoryView.text, sharedText];
}

In this method, we first get the value of the shared property and keep a local reference to
it. While it might seem that simply calling [SharedObject getSharedObject].sharedTextString in
the other parts of the code would yield the same results, that isn’t necessarily the case.
Keep in mind that some of the activity in iOS is multithreaded, so it is possible that the
value of the property will change from one call to another. By keeping a local reference for
the lifespan of the method, we are assured that the value we are working with remains
unchanged for the time we need it.

Copyright © 2011 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 11

Performing Cleanup Activities
An important thing you should do is remove observers when they are no longer necessary.
This is typically done when a view is unloaded.

- (void)viewDidUnload
{
 [[SharedObject getSharedObject] removeObserver:self
 forKeyPath:@"sharedTextString"];
 [self setSharedTextField:nil];
 [self setTextHistoryView:nil];
 [super viewDidUnload];
}

In this implementation, we remove the observer before reclaiming the outlet objects.This is
to avoid any changes occurring on the outlets if the property we are monitoring changes,
and prevents references through a nil pointer.

Second View Similar To First
The second view basically implements the same logic and the same methods. You can
see this by reviewing the sample project. The view is a UITextField delegate configured to
respond to the return key, registers itself as an observer on the same shared property, and
update its history field when changes are detected.

Copyright © 2012 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 12

Pitfal ls

Beware The Circular Reference Trap
As with anything there are pitfalls and traps that you should be aware of when working
with observers. The most common is a form of circular references, where an object
changes the value of a shared property while responding to notification that the property
was changed.

Object 1

- (void)observeValueForKeyPath
 [changes value for sharedData]

Object 2

- (void)observeValueForKeyPath
 [changes value for sharedData]

sharedDataChange
Notifications

Change
Value

Copyright © 2011 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 13

When Object 1 changes the value of sharedData, Object 2 is notified. But since Object 2
changes the value inside it’s observe method, Object 1 is notified again. This can continue
indefinitely. As well, the objects not only notify each other, they notify themselves, causing
another infinite loop.

How can this happen? Shouldn’t I just avoid changing the values of properties I’m
observing inside the observeValueForKeyPath method? That is certainly good practice. But
sometimes one of these can sneak in without you knowing it. Sometimes it can happen
because some other object referenced in the observeValueForKeyPath method changes
the shared property. At other times, it can be because actions in the
observeValueForKeyPath method trigger messages to other objects, which in turn alter
shared data.

Circular References With UITextField and Editing Changed Notification
An example of this is using a UITextField and responding to the Editing Changed
notification. The Editing Changed notification is called each time a letter is typed in a text
field, as well as if the user backspaces over text, or deletes all the text at once. But,
anytime the text property on the UITextField is changed programmatically, Editing Changed
is fired, as if the user was doing the typing.

How is this a problem? Consider a typical code structure: each time Editing Changed is
received, the object updates a shared text field. Consider a UITextField that has the action
listed below bound to Editing Changed.

-(IBAction)fieldChanged:(id)sender {
 sharedObject.sharedText = textControl.text;
}

It is pretty straightforward. It sets the value of the sharedText property to the current text in
the field.

At the same time, the observer notification method will typically set the value on the
UITextField when it is notified the shared value has changed.

-(void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context
{

Copyright © 2012 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 14

 textControl.text = sharedObject.sharedText
}

This certainly seems innocuous enough. But, channeling our best Admiral Ackbar, “It’s a
trap!”.

The problem arises as soon as the user types their first character in the text field. First, the
fieldChanged method is called. As soon as it sets the value of the sharedText property, that
results in the observers being notified the value has changed. That means that the
observerValueForKeyPath method on the same object is called. In that method, we set the
UITextField’s text property. That results in an Editing Changed notification, which calls
fieldChanged. And around we go again, ad infinitum.

One way to avoid this it to determine who the first responder is in the
observeValueForKeyPath method. If it is the UITextField associated with the shared text
property in question, then don’t change the text property of the UITextField. How do you
tell? Basically, you would have to test every control that is associated with a specific
shared value, and see if isFirstResponder is TRUE. Given that most views are fairly simple,
this shouldn’t cause an inordinate amount of overhead.

Copyright © 2011 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 15

Conclusion

As this document shows, the iOS implementation of observers is quite simple and
straightforward. It easily allows objects to monitor the value of properties on other objects.
The framework takes care of the overhead of notifying the appropriate objects when
changes are made. Your objects don’t have to manage this, which makes life simpler in
your own apps as well.

Your only job as a developer is to register an observer when appropriate, and remove any
observers when an object no longer cares about a particular property. You do need to be
careful about infinite loops and circular references where methods that respond to an
observer notification end up causing an observer notification. With careful thought and
planning, this can generally be avoided.

More questions? I can usually be reached via Twitter through @farwestab.

Copyright © 2012 FarWest Software, Inc.

Geoff’s Primer on iOS Observers 16

